COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (I SEMESTER) (APPLICABLE FROM JULY 2024)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) I YEAR, I SEMESTER CREDITS-4 T:04	P-1 (MAJOR) DIFFERENTIAL CALCULUS	variables ar 2. Sketch cu 3. Apply de	tcomes: 1. Know the concepts of cal ad their applications in the form of me arves in a plane using its mathematical rivatives in Optimization, Social scie weldge of curvature, asymptotes, enve Limit, continuity and differentiability of function of single variable, Cauchy's definition, Heine's definition, Uniform continuity, Borel's theorem, boundedness theorem, Bolzano's theorem, Intermediate value theorem, extreme value theorem, Darboux's intermediate value theorem for derivatives, Chain rule, indeterminate forms. Rolle's theorem, Lagrange and Cauchy Mean value theorems, mean value theorem with various forms of remainders,	ean value theore al properties in t ences, Physics ar	m and Taylor's theorem he different coordinate s ad Life sciences etc.		

	Successive differentiation, Leibnitz theorem, Maclaurin's and Taylor's series, Limit and Continuity of functions of two variables, Differentiation of function of two variables, Necessary and sufficient condition for differentiability of functions two variables.				WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Partial differentiation, Euler's theorem on homogeneous function, Schwarz's and Young theorem, Taylor's theorem for functions of two variables with examples, Maxima and minima for functions of two variables, Lagrange multiplier method, Jacobians, Inverse function theorem and implicit function theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Tangents and normals, Asymptotes, Curvature, Envelops and evolutes, Tests for concavity and convexity, Points of inflexion, Multiple points, Parametric representation of curves and tracing of parametric curves, Tracing of curves in Cartesian and Polar forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. S. Balach Suggested		al Calculus, Nev S. Davis, Calcu	lus, John Wiley and Son	s, Inc.,2002. 4.	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			https://oper http://heec	rences: 1.Digital platforms web links <u>hlearninglibrary.mit/edu/courses</u> <u>ontent.upsdc.gov.in/SearchContent.ar</u>	<u>spx</u>	-	x.org	
2	BSC (NEP) I YEAR, I SEMESTER CREDITS-4 T:04	P-2 (MAJOR) MATRICES & ALGEBRA	https://ww Course Ou 2. Study the 3. Recogniz 4. Link the 5. Analyze 6. Explain	w.lkouniv.ac.in/en/article/e-content-f tcomes: 1. Find the rank and eigen v e system of linear homogeneous and re- ze the mathematical objects that are g fundamental concepts of Groups and the subgroups of cyclic groups. the significance of the notion of coset and the concepts of rings, subrings and Elementary operations on matrices, Rank of a matrix, Echelon and normal form of a matrix, Inverse of a matrix by elementary operations, System of linear homogeneous and non- homogeneous equations,	aculty-of-science ralues of matrice non-homogeneo groups, and class symmetrical fig	s. us equations. ify them as abelian, cycl gures.	ic and permutation STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE
			UNIT-II	Theorems on consistency of a system of linear equations. Eigen values, Eigen vectors and characteristic equation of a matrix, Cayley-Hamilton theorem and its use in finding inverse of a matrix. Equivalence relations and partitions, Congruence modulo n, Definition of a group with examples and simple properties, Subgroups, Generators of a group, Cyclic groups, Coset decomposition, Lagrange's theorem and its consequences, Fermat and Euler theorems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-III Ioninary must and any must any		Normal subgroups, Quotient groups.				
UNIT-IV Image type to image in the set of	UNIT-III	isomorphism, Fundamental theorem of homomorphism, Theorems on isomorphism, Permutation groups, Even and odd permutations, The alternating group, Cayley's theorem, Direct	09	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	GET THE UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND ASSIGNMENTS
Image: Construction of the second structure of	UNIT-IV	(commutative rings, rings with unity, division rings, Integral domains and fields) with examples, basic properties, sub- rings, Characteristic of a ring, Ideals and quotient rings, Ring homomorphism, Isomorphism theorems, Field of quotient of an	09	METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	GET THE UNDERSTANDING OF THE TOPIC	MONTHLY MOCK TESTS AND ASSIGNMENTS
	Text Book 1. Linear A 2. V. Saha Suggested Topics in A Web Refe https://opu http://heed	s: Algebra by K. Hoffman and R. Kunze i and V. Bist, Algebra, Narosa Readings: 3. J.B. Fraleigh, A First C Algebra, John Wiley & Sons rences: Digital platforms web links: I enlearninglibrary.mit/edu/courses content.upsdc.gov.in/SearchContent.a	Course in Abstra NPTEL/SWAY <u>spx</u>	AM/ MOOCS/Opensta		EVALUATION THROUGH INTERNAL

3	BSC (NEP)	P- 1	Course Out	comes:				
3	BSC (NEP) I YEAR, I SEMESTER CREDITS-4 T:04	P-1 (MINOR) APPLICABLE MATHEMATIC S-I	 To compute vectors and to 2. To Know value theore To understand the vector of the vector	comes: ute the rank of a matrix and its appli- their applications. the concepts of calculus, namely, lim m and Taylor's theorem. stand the concept of double and triple stand the concepts of vector calculus. Types of matrices, elementary operations on matrices, rank of a matrix, echelon and normal forms of a matrix, inverse of a matrix by elementary operations, systems of linear homogeneous and non - homogeneous equations, consistency of linear system	its, continuity,differe	ntiability of functions and th	eir applications in	the form of mean
			UNIT-II	Limit, continuity and differentiability of functions of single variable, successive differentiation, Leibnitz's theorem, Rolle's theorem, Lagrange's and Cauchy's mean value theorems, Taylor's and Maclaurins's series with various forms of remainders.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND

					EVALUATE THE PERFORMANCE
	Limit, continuity and differentiability of functions of two variables, partial derivatives, Euler's theorem for homogeneous functions, total derivative, Taylor's and Maclaurins's theorem for functions of two variables, extrema of functions of two variables, Lagrange's method of unknown multipliers, Jacobian.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	Double and triple integration, change of order of integration, application of integration to length, surface and volumes (only Cartesian coordinates), beta, gamma and Dirichlet's integral – basic properties with applications, vector differentiation, gradient, divergence and curl with their physical interpretations, tangent and normal on a surface, directional derivative, line, surface and volume integrals, applications of Green's, Stoke's and Gauss'	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTA NDING OF THE TOPIC DISCUSSED	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

		divergence theorems (without			
		proofs).			
	References	<mark>:</mark>			FINAL
	Textbooks				EVALUATION
	1. Linear A	lgebra by K. Hoffman and R. Kun	ze.		THROUGH
	2. Calculus,	, Volumes I & II by T. M. Apostol	l.		INTERNAL
	3. Mathema	tical Analysis by S.C. Malik and	S. Arora, New Age	International	ASSESMENT
	Limited, Ne	ew Delhi.	-		UPLODED ON
	Suggested 2	Books			LU EXAM
	1. R. R. Go	ldberg : Methods of Real Analysis	, Oxford & IBH Pu	ıb. Co. Pvt. Ltd.	PORTAL
	2. R. G. Ba	rtle, The Elements of Real Analys	is, Wiley Internatio	nal Edition.	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-I YEAR (II SEMESTER) (APPLICABLE FROM JANUARY 2025)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) - I YEAR, I I SEMESTER CREDITS-4	P-3 (MAJOR) INTEGRAL CALCULUS	theorems of 2. Beta and 3. The vali approxima	utcomes: f the families and properties of Rie of integration. d Gamma functions and their prop d situations for the inter-changeal tion of transcendental functions ir e of solids by integrating over cross	erties. bility of different terms of powe	ntiability and integrab er series. 4. Compute a as.	lity with infinite s	sum, and
	T:04		UNIT-I	Definite integrals as limit of the sum, Riemann integral, Integrability of continuous and monotonic functions, Fundamental theorem of integral calculus, Mean value theorems of integral calculus, Differentiation under the sign of Integration.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
			UNIT-II	Improper integrals, their classification and convergence, Comparison test, µtest, Abel's test, Dirichlet's test, quotient test, Beta and Gamma functions.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE

								PERFORMANCE	
			UNIT-III	Rectification, Volumes and Surfaces of Solid of revolution, Pappus theorem, Multiple integrals, change of order of double integration, Dirichlet's theorem, Liouville's theorem for multiple integrals.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-IV	Vector Differentiation, Gradient, Divergence and Curl, Normal on a surface, Directional Derivative, Vector Integration, Theorems of Gauss, Green, Stokes and related problems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			1. T.M. Ap 2. Shanti N Suggested Sons. Web Refe https://ope https://ww	ext Books: T.M. Apostol, Calculus Vol. II, John Wiley Publication. Shanti Narayan, P.K. Mittal, Integral Calculus, S. Chand. uggested Readings: 3. Erwin Kreyszig, Advanced Engineering Mathematics, John Wiley &					
2	BSC (NEP) – I YEAR,	P-4	1. To lear	Course Outcomes: 1. To learn and visualize the fundamental ideas of coordinate geometry.					
	I I SEMESTER	(MAJOR)		cribe some surfaces by using analy a knowledge about regular geomet					

CREDITS-4 T:04	GEOMETRY	UNIT-I	General equation of second degree, System of conics, Tracing of conics, Confocal conics, Polar equation of conics and its properties.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-II	Three-Dimensional Coordinates, Projection and Direction Cosine, Plane (Cartesian and vector form), Straight line in three dimension (Cartesian and vector form).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-III	Sphere, Cone and Cylinder.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		UNIT-IV	Central conicoids, Paraboloids, Plane section of conicoids, Generating lines, Confocal conicoids, Reduction of second degree equation.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			2. S. L. Suggest 3. Rober Ltd Web Re https://o http://he		Coordinate Geometry ks: NPTEL/SWAY	y of three dimensions, l AM/ MOOCS/Opensta:		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
3	BSC (NEP) – I YEAR, I I SEMESTER CREDITS-4 T:04	P-2 (MINOR) APPLICABL E MATHEMAT ICS- II	 To und groups. To Kno 3. To kno transform 	Dutcomes: erstand the concepts of groups, subg ow the concepts of rings, subrings, id w the concept of vector spaces, its ba ations. n sequences and various tests to check Equivalence relations and partitions, congruence modulo n, groups, subgroups, cyclic groups, coset decomposition, Lagrange's theorem, Fermat's & Euler's theorems, normal subgroups, quotient groups, homomorphism and homomorphism theorems. Rings, types of rings - commutative rings, rings with unity, division rings, integral domains and fields, subrings, ideals and quotient rings, ring homomorphism and	leals, quotient rings asis and dimension,	and homomorphism of quotient space and line	rings.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH
				homomorphism theorems, characteristic of a ring,				WE ASSESS AND EVALUATE THE PERFORMANCE

	Polynomial rings.				
UNIT-IV	Vector spaces, subspaces, linear independence and dependence, basis and dimension, quotient space, linear transformations and their representation as matrices, rank - nullity theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	Sequences, limit of a sequence, convergence, divergence and oscillation of a sequence, infinite series and its convergence, geometric and harmonic series, tests for convergence and divergence - comparison test, Cauchy integral test, D'alembert's ratio test, Cauchy's nth root test, Raabe's logarithmic test, DeMorgan and Bertrand's test, alternating series, absolute and conditional convergence, Leibnitz's theorem (without proof).	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
2. J.A. Ga 3. R.G. Ba Suggested	s: s ii & V. Bist : Algebra, Narosa. llian : Contemporary Abstract Algeb artle : Introduction to Real Analysis,	Wiley.			FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

	2. D.S. Dummit & R.M. Foote : Abstract Algebra, Wiley International edition.	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (III SEMESTER) (APPLICABLE FROM JULY 2024)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY / WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
01	02	03	04	05	06	07	08	09			
1	BSC (NEP) II YEAR, I I I	P-5 (MAJOR)	 Formulat Solve first 	Formulate Differential Equations for various Mathematical models. Solve first order non-linear differential equation and linear differential equations of higher order using various techniques. Apply these techniques to solve and analyze various mathematical models.							
	SEMESTER CREDITS-4 T:04	ORDINARY DIFFERENTIAL EQUATIONS	UNIT-I	Differential Equations of first order and first degree, variable separable equations and equations reducible to this form, linear equations and Bernoulli equations, Exact differential equations and integrating factors, special integrating factors and transformations. Differential Equations of first order and higher degree, Clairaut equation, singular solutions. Orthogonal trajectories.	MIN. 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Linear Differential Equations with constant coefficients, homogeneous linear equation with constant coefficients, Wronskian,	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND			

	its properties and applications. Second order linear differential equations with variable coefficients: Use of a known solution to find another, normal form, method of undetermined coefficient, variation of parameters,		TEACHING METHOD)		DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-III	Systems of first order equations, linear systems, homogeneous linear systems with constant coefficients, Volterra's prey predator equations, Existence and uniqueness of solutions, method of successive approximations, Picard's theorem, Application to systems of first order equations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
UNIT-IV	Series solutions of differential equations, Power series method. Bessel, Legendre and Hypergeometric functions and their properties, recurrence and generating relations.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
Text Book1. B. Rai, I2. S. L RosSuggested3. G.F. SimMcGraw H	References:Text Books:1. B. Rai, D.P. Choudhary & H.J. Freedman, A Course in Differential Equations.2. S. L Ross, Differential Equations, 3rd Edition, WileySuggested Reading:3. G.F. Simmons, Differential Equations with Applications and Historical Notes, TataMcGraw HillWeb References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org						

			https://o	penlearninglibrary.mit/edu/co	lirses					
				econtent.upsdc.gov.in/SearchC						
				www.lkouniv.ac.in/en/article		faculty-of-science				
			Course O			ideally of belefice				
2	BSC (NEP)	P-6		ificance of mathematics involved in p	ohysical quantit	ies and their uses.				
	II YEAR,	(MAJOR)	-	erstanding the various concepts of b			motion, motion und	er other laws and		
	I I I SEMESTER	(MAJOK)		s study and to learn the cause-effect related to these.						
	SENIESIEK		4. The appl	ications in observing and relating rea	l situations/stru	ctures.				
	CREDITS-4		••	Frame of reference, work energy		OFFLINE TEACHING	STUDENTS WILL	EVALUATION		
	T:04	MECHANICS	UNIT-1	principle, Forces in three dimensions, Poinsot's central axis,	MIN 09 LECTURES	METHOD (NOTES IN FORM OF PDF,AUDIO/	GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS		
				Wrenches, Null lines and planes.		VIDEO,CLASS ROOM TEACHING METHOD)		AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-II	Virtual work, Stable and Unstable equilibrium, Catenary, Catenary of uniform strength.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-III	Velocities and accelerations along radial and transverse directions, and along tangential and normal directions, Simple Harmonic motion, Motion under other law of forces. Elastic strings, Motion in resisting medium, Constrained motion, Motion on smooth and	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

				rough plane curves.						
			UNIT-IV	Motion of particles of varying mass, Rocket motion, Central orbit, Kepler's laws of motion, Motion of particle in three dimensions, Rotating frame of reference, Rotating Earth, Acceleration in terms of different coordinates systems.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			Text Bool 1. R.C. Hib 2. Nelson, I Suggested 3. J.L. Syng Web Refe https://or http://he	References: F Text Books: T 1. R.C. Hibbeler, Engineering Mechanics-Statistics T 2. Nelson, Engineering Mechanics- Dynamics, Tata McGraw Hill A Suggested Readings: E 3. J.L. Synge & B.A. Griffith, Principles of Mechanics, Tata McGraw Hill E Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science						
3	BSC (NEP) - II YEAR,	P-3 (MINOR)	integral for series. 2. To unde	tcomes: 1. To know the basic cond rmula, derivative of analytic function erstand various methods for nume	ons, Taylor's a	nd Laurent's of equations.	Cauchy's			
	III SEMESTER			v how to do numerical differentiation e systems of linear equations by s	0					
	CREDITS-4 T:04	Applicable Mathematics– III	UNIT-1	Functions of complex variables - analytic functions, Cauchy - Riemann equations, harmonic functions, Cauchy's integral theorem, Cauchy's integral formula, derivatives	MIN 09 LECTURES	OS. OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH		
				of analytic functions, formulae for first, second and nth				WE ASSESS AND EVALUATE THE PERFORMANCE		

UNIT-II	derivatives, Taylor's and Laurent's series, singularities, zeroes and poles of order n. Numerical solutions of equations - bisection method, secant method, regula -falsi method, Newton - Raphson method and interpolation with equispaced points.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Finite differences, Newton's forward and backward interpolation formula, Lagrange interpolation formula, divided differences and Newton's formula, numerical differentiations and integration - trapezoidal and Simpson's rules, Newton-Cotes integration formula, Ramberg integration, Gaussian quadrature.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Systems of linear equations - Gauss elimination method, Gauss-Jordan method, LU decomposition, Jacobi method, Gauss - Seidel method, the algebraic eigenvalue problem - Jacobi's method and power method.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
References	<u>.</u>				FINAL EVALUATION

	Text Books: 1. J.W. Brown and R.V. Churchill : Complex Variables and Applications, Mc Graw Hill. 2. M.K. Jain, S.R.K. Iyengar and R.K. Jain : Numerical methods for scientific and engineering computations, New Age International, New Delhi. Suggested Readings: 1. S.S. Sastry : Introductory Methods of Numerical Analysis, Prentice Hall of India. 2. Complex Variables, Schaum's Outline Series Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
--	--	--

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC (NEP)-II YEAR (IV SEMESTER) (APPLICABLE FROM JANUARY 2025)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/W EEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL
01	02	03	04	05	06	07	08	09
1	BSC (NEP) II YEAR, I V SEMESTER	P-7 (MAJOR) mathematical methods	2. To get ki	utcomes: op mathematical skills in calculus an nowledge of Laplace Transforms and equainted with the essentials of calcul	Fourier series.			
	CREDITS-4 T:04		UNIT-I	Definition of a sequence, theorems on limits of sequences, bounded and monotonic sequences, Cauchy's convergence criterion, Cauchy sequence, limit superior and limit inferior of a sequence, subsequence, Series of non-negative terms, convergence and divergence, Comparison tests, Cauchy's integral test, Ratio tests, Root test, Raabe's logarithmic test, de Morgan and Bertrand's tests, alternating series, Leibnitz's theorem, absolute and conditional convergence. Sequences and series of functions: point wise and uniform convergence of	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

UNIT-	transforms, Linearity of Laplace transform and their properties, Laplace transform of the derivatives and integrals of a function, Convolution theorem, inverse Laplace transforms, Solution of the differential equations using Laplace transforms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-	II Fourier series, Fourier expansion of piecewise monotonic functions, Half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	V Calculus of variations-Variational problems with fixed boundaries- Euler's equation for functionals containing first order derivative and one independent variable, Extremals, Functionals dependent on higher order derivatives, Functionals dependent on more than one independent variable, Variational problems in	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

				parametric form.				
			1. T.M. Apo 2. RG Bartl Suggested I 3. G.F. Sim McGraw Hi 4. A.S. Gup Web Referent https://op	Fext Books: Introduction to Real Analysis, Pearson Introduction to Real Analysis, Wiley India 2. RG Bartle, Introduction to Real Analysis, Wiley India Introduction to Real Analysis, Wiley India Suggested Readings: Introduction to Real Analysis, Wiley India 3. G.F. Simmons, Differential Equations with Applications and Historical Notes, Tata-McGraw Hill Introduction to Variations with Applications Prentice Hall India. Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org Intps://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx Intps://openlearninglibrary.mit/edu/courses				
			https://www	v.lkouniv.ac.in/en/article/e-content		<u>ce</u>		
2	BSC (NEP) – II YEAR,	P-8	Course Ou 1. The fundation	utcomes: mental concept of Rings, Fields, sub	orings, integral d	omains and the correspo	nding morphisms.	
	I V SEMESTER CREDITS-4	(MAJOR)		pt of linear independence of vectors cepts of linear transformations, the				•
	T:04	LINEAR	5. Group acti	hisms for constructing new groups f ions, Sylow theorems and their apple inner products and determine ortho	ications to check	nonsimplicity.		
		& ABSTRACT ALGEBRA	UNIT-I	Automorphism, inner automorphism, automorphism groups and their computations. Conjugacy relations, Normaliser Counting principle and the class equation of a finite group, Center of group of prime power order simple groups, Group action Burnside lemma, Sylow theorems and its applications.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILLGET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	NIT-II Prime and maximal ideals, Euclidean Rings, Principal ideal rings, Polynomial Rings, Polynomial over the Rational Field, The Eisenstein Criterion, Polynomial Rings over Commutative Rings, unique factorization domain.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	NIT-III Vector spaces, Subspaces, Linear independence and dependence of vectors, Basis and dimension, Quotient space, Linear transformations, Direct sums, The Algebra of linear transformations, rank nullity theorem, their representation as matrices, Linear functionals, Dual space, Characteristic values, Cayley Hamilton Theorem.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	JNIT-IV Inner product spaces, Cauchy- Schwarz inequality, Orthogonal vectors, Orthonormal sets and bases, Bessel's inequality for finite dimensional spaces, Gram- Schmidt orthogonalization process, Bilinear and Quadratic forms.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Te 1. T 2. A 3. L	References: ext Books: Topics in Algebra by I. N. Herstein. Algebra by V. Sahai and V. Bist Linear Algebra by V. Sahai and V. Bist aggested Readings:				FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

			4. Linear A	lgebra by K. Hoffman and R. Kunze.							
			Web Refe	rences: Digital platforms web lin	nks : NPTEL/	SWAYAM/ MOOCS/	Openstax.org				
			https://or	<u>penlearninglibrary.mit/edu/cou</u>	<u>rses</u>						
			http://he	econtent.upsdc.gov.in/SearchC	<u>ontent.aspx</u>						
			https://w	ttps://www.lkouniv.ac.in/en/article/e-content-faculty-of-science							
3	BSC (NEP) -	<mark>P-</mark> 4	Course O	Outcomes:							
	II YEAR,	_	1. To unde	To understand application and techniques of solving various types of							
	IV	(MINOR)		linary differential equations.							
	SEMESTER		2. To unde	erstand the Laplace transforms and	l its application	ns in solving					
			differential								
	CREDITS-4			erstand Fourier series and Fourier t							
	T:04	Applicable		erstand standard techniques for find	ding numerica	l solution of					
	1.04	Mathematics-		differential equations.	1	1	1	1			
		IV	UNIT-I	Ordinary differential equations -	MIN 09	OFFLINE TEACHING METHOD	STUDENTS WILLGET THE	EVALUATION THROUGH			
				Bernoulli's equation, exact	LECTURES	WETHOD	UNDERSTANDING	MONTHLY MOCK			
				differential equations and		(NOTES IN FORM OF	OF THE TOPIC	TESTS AND			
				integrating factors, special		PDF,AUDIO/ VIDEO,CLASS ROOM	DISCUSSED.	ASSIGNMENTS AND			
				integrating factors and		TEACHING METHOD)		DISCUSSIONS			
				transformations, differential				THROUGH WHICH			
				equations of order one and				WE ASSESS AND EVALUATE THE			
				degree more than one,				PERFORMANCE			
				Clairaut's equation, singular							
				solutions and orthogonal							
				trajectories, Linear differential							
				equations with constant							
				coefficients, homogeneous							
				Linear differential equations,							
				series solutions of Legendre's,							
				Bessel's and hypergeometric							
				equations and their basic							
				properties.							
			UNIT-II	Laplace transforms - existence	MIN 09	OFFLINE TEACHING METHOD	STUDENTS WILL GET THE	EVALUATION THROUGH			
				theorem, Laplace transforms of	LECTURES		UNDERSTANDING	MONTHLY MOCK			
				derivatives and		(NOTES IN FORM OF	OF THE TOPIC	TESTS AND			
				integrals, inverse Laplace		PDF,AUDIO/	DISCUSSED.	ASSIGNMENTS			

	transform, convolution theorem, applications to simple linear differential equations.		VIDEO,CLASS ROOM TEACHING METHOD)		AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Periodic functions, Fourier series, Fourier expansion of piecewise monotonic functions, half and full range expansions, Fourier transforms (finite and infinite), Fourier integral.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Numerical solution of ordinary differential equations - Taylor series method, Euler's method, Runge - Kutta method, Milne's method, Adam's method.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Tata McG 2. M.K. Ja engineerir 3. T. M. / Web Refe https://opu http://hee	ks: mmons : Differential Equations with	Jumerical meti Jonal, New De NPTEL/SWAY2	hods for scientific and lhi. AM/ MOOCS/Openstax		FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW

ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (V SEMESTER) (APPLICABLE FROM JULY 2024) EACH PAPER CARRIES 100 MARKS (4 CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL		
01	02	03	04	05	06	07	08	09		
I	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	<mark>P –09</mark> NUMERICAL ANALYSIS	UMERICAL 1. Some numerical methods to find the zeroes of nonlinear functions of a single variable and solution of a system equations, up to a certain given level of precision							
			UNIT-I	Solution of equations: bisection, Secant, Regular Falsi, Newton Raphson's method, Newton's method for multiple roots, Interpolation, Lagrange and Hermite interpolation, Difference schemes, Divided differences, Interpolation formula using differences.		OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-II	Numerical differentiation, Numerical Quadrature: Newton Cotes Formulas, Gaussian Quadrature Formulas, System of Linear equations: Direct method for solving systems of linear	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND		

UNIT-III	equations(Gauss elimination, LUDecomposition, CholeskyDecomposition), Iterativemethods (Jacobi, Gauss Seidel,Relaxation methods). TheAlgebraic Eigen Value problem:Jacobi's method, Givens method,Power method.Numerical solution of Ordinarydifferential equations: Eulermethod, single step methods,Runge-Kutta method, Multi-stepmethods: Milne-Simpson method,Types of approximation: LastSquare polynomialapproximation, Chebyshevpolynomial approximation.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATE THE PERFORMANCE EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
	Difference Equations and their solutions, Shooting method and Difference equation method for solving Linear second order differential equation with boundary conditions of first, second and third type.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
1. Nu Iyo 2. Int Suggested	 <u>Reference Books:</u> Numerical Methods for Engineering and scientific computation by M. K. Jain, S.R.K. Iyengar & R.K. Jain. Introductory methods of Numerical Analysis by S. S. Sastry Suggested Readings: Kandasamy P. & et Al., Numerical Methods, S. Chand & Co. 						

п	BSC (NEP) -III YEAR, V SEM	P-10 ANALYSIS	Digital plat https://ope http://heec https://ww Course Ou 1. Understa 2. Know th	Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses http://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science Course Outcomes: 1. Understand the basic concepts of metric spaces. 2. Know the concepts such as open balls, closed balls, compactness, connectedness etc.								
	CREDITS-4 T:04		Riemann eo 4. Evaluate 5. Expand s apply Cauc	 3.Understand the significance of differentiability of complex valued functions leading to the understanding of Cauchy-Riemann equations. 4. Evaluate the contour integrals and understand the role of Cauchy-Goursat theorem and the Cauchy integral formula. 5. Expand some simple functions as their Taylor and Laurent series, classify the nature of singularities, find residues and apply Cauchy Residue theorem to evaluate integrals. 								
			UNIT-I	Definition and examples of metric spaces, Neighborhoods, Interior points, Limit Points, Open and closed sets, Convergent and Cauchy sequences, Completeness, Cantor's intersection theorem. Uniform convergence of sequences and series of functions, Uniform convergence and continuity, Uniform convergence and integration, Uniform convergence and differentiation, Power series.	MIN. 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE				
			UNIT-II	Stereographic projection, Continuity and Differentiability of complex functions, Analytic functions, Cauchy Riemann equations, Harmonic functions.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE				

UNI	-III Complex integration, Cauchy- Goursat theorem, Cauchy's Integral formula, Formulae for first, second and nth derivatives, Cauchy's Inequality, Liouville's Theorem, Elementary functions, Mapping by elementary functions, conformal mapping.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
UNI	-IV Taylor and Laurent Series, Absolute and uniform convergence of Power series, Residues and Poles, Residue theorem, Zeros and poles of order m, Evaluation of improper real integrals, Definite integrals involving sines and cosines.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
Tex 1. M 2. Co Sugg 3. M Web Digit https http	REFERENCE BOOK: _Text books: 1. MATHEMATICAL ANALYSIS BY SHANTI NARAIN. 2. COMPLEX VARIABLE AND APPLICATIONS BY BROWN & CHURCHILL. Suggested Readings: 3. Magnus Robert, Fundamental Mathematical Analysis, Springer Undergraduate Mathematics Series Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://neecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science					

III	BSC (NEP) -III YEAR,	P-11A	Course Ou	itcomes:						
	V SEM CREDITS-4	INTEGRAL & PARTIAL		e different types of Linear integral of practical problems of applied mat		d partial differential equ	ations for the imp	art knowledge of		
	T:04	DIFFERENTIAL EQUATIONS	 Understand the theoretical basic behavior of different types of arising problems such as Fredholm, Volterra, Singular, Hilbert and Cauchy integral equations. Explain the foundations of various problems related to Wave, Laplace and Diffusion equations by the method of separation of variables. Deal with problems in applied mathematics, theoretical mechanics and mathematical physics and engineering. 							
			UNIT-1	Origin of first order partial differential equations. Partial differential equations of the first order and degree one, Lagrange's solution, Partial differential equation of first order and degree greater than one. Cauchy's method of characteristic, Charpit's method of solution, Surfaces orthogonal to the given system of surfaces.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-II	Origin of second order PDE, Solution of partial differential equations of the second and higher order with constant coefficients, Classification of linear partial differential equations of second order, Solution of second order partial differential equations with variable coefficients, Monge's method of solution, Cauchy's problem for Homogenous wave equation, Properties of Harmonic	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

	function, Methods of separation of variable for solving Laplace, wave and diffusion equations.				
UNIT-III	Linear Integral Equations- Definition and Classification of conditions, Special kinds of Kernels, Eigen values and Eigen functions, Convolution integral, Inner product, Integral equations with separable Kernels. Reduction to a system of algebraic equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Fredholm alternative, Fredholm Theorem, Fredholm alternative theorem, Approximate method, Method of successive approximations, Iterative scheme. Solution of Fredholm and Volterra integral equation, Results about resolvent Kernel	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Reference book: Text Books: 1. I.N. Sneddon: Elements of Partial Differential Equations, Mc -Graw Hill, 1988. 2. Ram P. Kanwal, Linear Integral Equations (2nd ed.), Birkhäuser, Boston.					
Delhi, 2005	nath: An Elementary Course in Parti at U: Partial Differential Equations of		-	-	

			https://open http://heeco	vigital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org <u>https://openlearninglibrary.mit/edu/courses</u> <u>http://heecontent.upsdc.gov.in/SearchContent.aspx</u> <u>https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science</u>							
ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 B DISCRETE MATHEMATICS	 Lattices a Boolean Graphs, t Display science. Elaborate 	5. Elaborate and expand their understanding of the tools helpful in the implementation of circuit design, AI algorithms and compiler construction.							
			UNIT-1	Propositional Logic- Proposition logic, basic logic, logical connectives, truth tables, tautologies, contradiction, normal forms (conjunctive and disjunctive), modus ponens and modus tollens, validity, predicate logic, universal and existential quantification, proof by implication, converse, inverse contrapositive, contradiction, direct proof by using truth table.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-II	Boolean Algebra- Basic definitions, Sum of products and products of sums, duality principle, Boolean functions, Logic gates and Karnaugh maps. Lattice, Duality, types of lattices, sublattices, bounded lattices, distributive lattices, complemented lattices, modular	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

	lattices, join irreducible elements.				
UNIT-II	Combinatorics- Inclusion- exclusion, recurrence relations (nth order recurrence relation with constant coefficients, Homogeneous recurrence relations, Inhomogeneous recurrence relations), generating function (closed form expression, properties of G.F., solution of recurrence relations using G.F. solution of combinatorial problem using G.F.)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
		MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

			 Discrete Discrete Mendelse John E. H and Computing Suggested Arnold E K. H. Rower Web Refer Digital plat https://perent 	 Text books: 1. Discrete Mathematics by C. L.Liu. 2. Discrete Mathematics with computer application by Trembley and Manohar. 3. Mendelson, Elliott: Introduction to Mathematical Logic, Chapman & Hall, 1997 4. John E. Hoprcroft, Rajeev Motwani, Jeffrey D. Ullman: Introduction to Automata Theory, Languages and Computation, Pearson Education, 2000 Suggested Readings: 5. Arnold B. H.: Logic and Boolean Algebra, Prentice Hall, 1962 6. K. H. Rosen: Discrete Mathematics and its applications, MGH 1999 Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science 						
ш	BSC (NEP) -III YEAR, V SEM CREDITS-4 T:04	P-11 C NUMBER THEORY	Course Outcomes: 1. To have knowledge of primes, congruences, quadratic residues and primitive roots. 2. Solving Diophantine equations. 3. Derive generating functions and recurrence relations.							
			UNIT-1	Divisibility; Euclidean algorithm; primes; congruences; Fermat's theorem, Euler's theorem and Wilson's theorem; Fermat's quotients and theirelementary consequences; solutions of congruences; Chinese remainder theorem; Euler's phi-function. Congruences	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

UNIT-II	Congruence modulo powers of prime; primitive roots and their existence; quadratic residues; Legendre symbol, Gauss' lemma about Legendre symbol; quadratic reciprocity law; proofs of various formulations; Jacobi symbol.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-III	Diophantine Equations, Solutions of $ax + by = c$, $xn + yn = zn$; properties of Pythagorean triples; sums of two, four and five squares; assorted examples of diophantine equations.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
UNIT-IV	Generating Functions and Recurrence Relations, Generating Function Models, calculating coefficient of generating functions, Partitions, Exponential Generating Functions, A Summation Method. Recurrence Relations: Recurrence Relation Models, Divide and conquer Relations, Solution of Linear, Recurrence Relations, Solution of Inhomogeneous Recurrence Relations, Solutions with Generating Functions.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

		Reference book: Text books: 1. Niven, I., Zuckerman, H. S. and Montgomery, H. L. (2003) An Int. to the Theory of Numbers (6th edition) John Wiley and sons, Inc., New York. 2. Burton, D. M. (2002) Elementary Number Theory (4th edition) Universal Book Stall, New Delhi. 3. Balakrishnan, V. K. (1996) Introductory Discrete Mathematics, Dover Publications. Suggested Readings : 4. Balakrishnan, V. K. (1994) Schaum's Outline of Theory and Problems of Combinatorics Including Concepts of Graph Theory, Schaum's Outline Web References: Digital platforms web links: NPTEL/SWAYAM/ MOOCS/Openstax.org https://openlearninglibrary.mit/edu/courses https://heecontent.upsdc.gov.in/SearchContent.aspx https://www.lkouniv.ac.in/en/article/e-content-faculty-of-science	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL
* N	NOTE: TE ✓ Credi	E AN INTERNSHIP / TERM ASSIGNMENT IN V SEMESTER (NEP).	

COLLEGE: MBP GOVT. P.G. COLLEGE, ASHIANA, LUCKNOW ACADEMIC CALENDAR : SESSION- (2024-2025)

NAME OF TEACHER: DR. POONAM BAJPAI

DEPARTMENT: DEPARTMENT OF MATHEMATICS

CLASS: BSC(NEP)-III YEAR (VI SEMESTER) (APPLICABLE FROM JANUARY 2025) EACH PAPER CARRIES 100 MARKS (4 CREDITS)

S.NO.	CLASS (YEAR, SEMESTER)	PAPER	UNIT	TOPIC NAME	MONTHLY/ WEEKLY PLAN	TEACHING PEDAGOGY	LEARNING OUTCOMES	ANY OTHER DETAIL			
01	02	03	04	05	06	07	08	09			
I	BSC (NEP) -III YEAR, VI SEM CREDITS-4	P-12 ADVANCED ALGEBRA	 Give the Construct Understa 	Course Outcomes: . Give the structure of an abelian group of a given order. . Construct the splitting field extension of a given polynomial. . Understand the interplay of group theory and field theory. . Determine the minimal polynomial of an algebraic element.							
	T:04		UNIT-1	Series of groups, Schreier theorem, Jordan Holder theorem, solvable groups, Nilpotent groups, Insolvability of Sn for n>5,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			
			UNIT-11	Finite Abelian groups, primary decomposition theorem, basis theorem, fundamental theorem of finite Abelian group, elementary divisors and invariant factors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE			

			UNIT-1II	Field extensions: finite extension, finitely generated extension, algebraic extension, simple extension, transcendental extension, finite field.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-1V	Splitting field, algebraically closed field, normal extension, separable extension, primitive element theorem. Galois theory- Galois group, Galois extension, Fundamental theorem of Galois theory, Artin's theorem, Fundamental theorem of algebra (Algebraic Proof)	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			Reference						
			Text Bool 1. V. Saha	<s:< b=""> i & V. Bist: Algebra, Fourth Edi[:]</s:<>	tion. Narosa				
			2. J. A. Ga	llian, Contemporary Abstract A	Algebra, 4th	edition, Narosa			
				oinson, An Introduction to Abs	tract Algebi	ra, Hindustan Book A	gency.		
				l Readings: leigh: A first course in Abstrac	rt algebra. N	arosa			
				: Algebra, Addison Wesley.	Li algebra, Iv	arosa			
			Web Refe						
				atforms web links: NPTEL/SWA		CS/Openstax.org			
				https://openlearninglibrary.mit/edu/courses					
				econtent.upsdc.gov.in/Search(ww.lkouniv.ac.in/en/article/e-o		ltv-of-science			
II	BSC (NEP)	P-13	Course Ou					1	
	-III YEAR, VI SEM	DIFFERENTIAL	1. Explain t	he concept of differentiable geometry					
		GEOMETRY &		nd the concepts of tensors in different		у.			
	CREDITS-4	TENSOR ANALYSIS	3. Apply va	rious concept of differential calculus	in tensors.				

T:04	UNIT-1	Local theory of curves-Space curves, Examples, Plane Curves, tangent and normal and binormal, Osculating Plane, normal plane and rectifying plane, Helices, Serret-Frenet apparatus, contact between curve and surfaces, tangent surfaces, involutes and evolutes of curves, Bertrand curves, Intrinsic equations, fundamental existence theorem for space curves.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
	UNIT-II	Metric-first fundamental form and arc length, Direction coefficients, families of curves, intrinsic properties, geodesics, canonical geodesic equations, normal properties of geodesics, geodesics curvature, Gauss- Bonnet theorem, Gaussian curvature, normal curvature, Meusneir's theorem, mean curvature, Gaussian curvature, umbilic points, lines of curvature, Rodrigue's formula, Euler's theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOC TESTS AND ASSIGNMENTS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE AND DISCUSSIONS
	UNIT-III	Tensor algebra: Vector spaces, the dual spaces, tensor product of vector spaces, transformation formulae, contraction, special tensor, inner product, associated tensor. Tensor Analysis: Contravariant and covariant vectors and tensors, Mixed tensors,	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE

	Symmetric and skew-symmetric tensors, Algebra of tensors, Contraction and inner product, Quotient theorem, Reciprocal tensors, Christoffel's symbols, Covariant differentiation. Gradient of scalars, Divergence of a contra-variant vector, covariant vector and conservative vectors, Laplacian of an invariant, curl of a covariant vector, irrotational vector, Riemannian space, Riemannian curvatures and their properties, Ricci tensor, and scalar curvature, Einstein space and Einstein tensor, Geodesics.	MIN 09 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE
Text boo 1. T.J. V 2. S.Lan 3. B. O'I 4. R.S. M Pothish Suggest 5. David Web Re Digital j https://	NCE BOOK: ks: /illmore, An introduction to Diff g., Fundamentals of Differential Weil, Elementary Differential Geo fishra, A Course in Tensors with ala 1988. ed Readings: I C. Kay, Tensor Analysis, Schau ferences: platforms web links: NPTEL/SWA openlearninglibrary.mit/edu/co seecontent.upsdc.gov.in/SearchC /www.lkouniv.ac.in/en/article	Geometry; S metry, 2nd T Application m's Outline YAM/ MOO urses Content.aspx	Springer, 1999. Edition, Academic pre n to Riemannian Geon series McGraw Hill 19 CS/Openstax.org	ess, 2006. netry,	FINAL EVALUATION THROUGH INTERNAL ASSESMENT UPLODED ON LU EXAM PORTAL

ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	ADVANCED DIFFERENTIAL EQUATIONS 1. Solve to different equation 2. Conce 3. Prove UNIT-1	 <u>Course Outcomes:</u> 1. Solve the system of 1st order differential equations, 2nd order differential equations, nth order differential equations, oscillatory equation, stability and unstability of linear and non-linear system of equations. 2. Conceptualize Green's functions and nature of critical points. 3. Prove advanced understanding of topics in applied mathematics, computational physics etc. 							
			UNIT-1	Linear System- Introduction, properties of linear homogeneous systems, Abel- Liouville formula, Periodic linear System, Floquet's theorem, Solution of nth order linear homogeneous equation with variable coefficients.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-II	Inhomogeneous linear system, nth order linear non- homogeneous equation with variable coefficients, Hurwitz's theorem, Non-linear system, Volterra's prey & predator equation, Non linear equations: Autonomous system.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		
			UNIT-III	The phase plane & its phenomena, types of critical points & Stability, Critical points & stability for linear system, stability by Liapunov's direct method. Green function, Construction of Green functions, Green function of homogeneous	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE		

	and non-homogeneous end conditions, Strum Liouville systems.					
UNI	I-IV Second order differential equation: Introduction, Preliminary results, Boundedness of solutions, Oscillatory equation, number of zeroes, Pruffer's transformation, Strum theorem, Strum's comparison theorem.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
Tex 1. C 2. E Nar 3. S Sug	REFERENCE BOOK: Text books: 1. G. F. Simmons: Differential Equation, Tata McGraw-Hill 2. B. Rai, D. P. Chaudhary, H.I. Freedman: A course in Ordinary Differential Equations, Narosa Publishing House. 3. S. L. Ross: Differential Equations, Wiley Indian, 2004 Suggested Readings:					
Wel Wel Dig http htt	E. A. Coddington: An Introductic References: References : tal platforms web links: NPTEL/SWA <u>s://openlearninglibrary.mit/edu/co</u> <u>b://heecontent.upsdc.gov.in/Search</u> <u>ps://www.lkouniv.ac.in/en/articl</u>	AYAM/ MOO <u>urses</u> Content.asp:	CS/Openstax.org			

ш	BSC (NEP) -III YEAR, VI SEM CREDITS-4 T:04	P-14 B OPERATIONS RESEARCH	Course Outcomes: 1. Be able to understand the application of OR and frame a LP Problem with solution 2. Be able to build and solve Transportation and Assignment problems using appropriate method. 3. Be able to design and solve simple models of CPM and queuing to improve decision making and develop critical thinking and objective analysis of decision problems. 4. to take best course of action out of several alternative courses for the purpose of achieving objectives by applying game theory and sequencing models.						
			UNIT-1	Linear programming problems, Slack and surplus variables, Statement of general Linear programming Problems, Standard and matrix forms of linear programming problem, Basic feasible solution.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-II	Convex sets, Fundamental theorem of linear programming, Simplex method. Artificial variables, Big-M method, Two- phase method, Revised simplex method.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
			UNIT-III	Resolution of degeneracy, Duality in linear programming problems, Dual simplex method, Primal-dual relation analysis, integer programming.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	

	UNIT-IV	Transportation problems, assignment problems, Queuing Theory, Markov Chains, PERT and CPM, Optimization and constrained Optimization using Langrange's Multiplier.	MIN 06 LECTURES	OFFLINE TEACHING METHOD (NOTES IN FORM OF PDF,AUDIO/ VIDEO,CLASS ROOM TEACHING METHOD)	STUDENTS WILL GET THE UNDERSTANDING OF THE TOPIC DISCUSSED.	EVALUATION THROUGH MONTHLY MOCK TESTS AND ASSIGNMENTS AND DISCUSSIONS THROUGH WHICH WE ASSESS AND EVALUATE THE PERFORMANCE	
	Text bool 1. Hamdy 2. Kanti S 29 Suggester 3. G. Hadl Web Refe Digital pla https://or http://he	REFERENCE BOOK: Image: Second sec					
* NOTE: T	HERE WILL BE A MIN	NOR PROJECT IN VI SEM	ESTER (NI	EP).			